WeChat Mini Program
Old Version Features

溃结核心方对溃疡性结肠炎小鼠NF-κB/HIF-1 α通路的影响

Huang Li,Peng Yunhua,Chen Tian, Lu Hong,Yang Wei

Journal of Emergency in Traditional Chinese Medicine(2023)

上海中医药大学附属曙光医院

Cited 0|Views16
Abstract
目的 探究溃结核心方对葡聚糖硫酸钠诱导的溃疡性结肠炎(UC)小鼠的保护作用和生效机制.方法 将48只C57BL/6J小鼠随机分为正常组、模型组、美沙拉嗪组及溃结核心方低、中、高剂量组.各组小鼠除正常组外均自由饮用4%DSS溶液共6 d以构建急性UC小鼠模型.记录小鼠一般情况、疾病活动指数评分,HE染色法进行病理检测并评分,记录各组小鼠结肠长度、病理评分结果;采用qRT-PCR和IHC法检测各组小鼠结肠组织肿瘤坏死因子-α(TNF-α)、白细胞介素-1β(IL-1β)表达;分别使用qRT-PCR实验和WB实验检测缺氧诱导因子-1α(HIF-1α)、核转录因子-κB(NF-κB)的mRNA和蛋白表达水平.结果 相比正常组,模型组小鼠的体质量、结肠长度均明显降低(P<0.01);DAI评分、病理组织学评分、TNF-α、IL-1β、NF-KB、HIF-1α mRNA和蛋白表达水平有显著升高(P<0.05或P<0.01);小鼠的结肠黏膜结构遭破坏,有炎性细胞浸润;与模型组相比,溃结核心方中、高剂量组和美沙拉嗪组小鼠体质量、结肠长度有明显增加(P<0.05),DAI评分、病理组织学评分、TNF-α、IL-1 βmRNA表达水平均明显降低(P<0.05或P<0.01),溃结核心方高剂量组和美沙拉嗪组小鼠NF-κB、HIF-1αmRNA和蛋白表达水平均明显降低(P<0.05或P<0.01),结肠黏膜病理损伤明显减轻.结论 溃结核心方可显著改善DSS诱导的UC 小鼠的结肠炎症,其作用机制与调节NF-κB/HIF-1 α信号通路相关.
More
Key words
Ulcerative colitis,Kuijie Hexin Decoction,Dextran sulfate sodium,NF-KB,HIF-1α,Mice
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined