WeChat Mini Program
Old Version Features
Activate VIP¥0.73/day
Master AI Research

上尿路结石成分与循环维生素水平的相关性研究

International Journal of Urology and Nephrology(2023)

上海交通大学医学院附属新华医院

Cited 0|Views12
Abstract
目的 探讨上尿路结石患者的血浆维生素水平与结石成分的关系.方法 选取2020年1月至2021年8月在本院收治的上尿路结石患者(结石组,320例)和同期非尿路结石患者(对照组,90例)的临床资料,再将结石组分为感染性结石组(80例)和非感染性结石组(240例),并将结石组患者按结石成分分为磷酸盐结石组(162例)、草酸盐结石组(106例)、尿酸盐结石(29例)和碳酸钙结石组(20例)、磷酸镁铵(2例)和胱氨酸结石(1例).记录所有患者的血浆维生素水平,同时收集并分析患者术后的结石成分,分析两组的维生素水平差异和引起上尿路结石的相关影响因素.结果 结石组中占比最大的是磷酸钙结石,其次是草酸钙结石,占比最小的是胱氨酸结石.结石组和对照组患者的血浆维生素A、维生素B1(2、6、9、12)、维生素C、维生素D及维生素E水平比较,差异均无统计学意义(均P>0.05).感染性结石组和非感染性结石组的上述血浆维生素水平比较,差异均无统计学意义(均P>0.05).与对照组相比,磷酸盐、草酸盐、尿酸盐和碳酸钙结石组患者中的血浆维生素B2(6、12)、维生素C、维生素D及维生素E比较,差异均无统计学意义(均P>0.05),但维生素B1、维生素B9、维生素A比较,差异均有统计学意义(均P<0.05).碳酸钙结石组患者的血浆维生素A较其他组升高,差异均有统计学意义(均P<0.05).尿酸结石组中的维生素B1、维生素B9水平低于草酸钙结石组、磷酸钙结石组,差异均有统计学意义(均P<0.05).结石组的血尿酸水平高于对照组(P<0.05),尿酸结石组的血尿酸升高最明显.维生素B1与血尿酸水平存在相关性(r=-0.878,P<0.05).结论 碳酸钙结石患者的血浆维生素A升高,尿酸结石患者的血浆维生素B1、维生素B9降低,调整患者维生素水平可能有助于降低特定结石的形成风险.
More
Key words
Urinary Calculi,Vitamins,Uric Acid,Calcium Oxalate
上传PDF
Bibtex
收藏
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined