WeChat Mini Program
Old Version Features

改进的Faster-RCNN算法在聚乙烯管接头内部缺陷检测中的应用

Journal of Applied Acoustics(2023)

江南大学 | 江南大学机械工程学院 无锡 214122

Cited 0|Views2
Abstract
超声相控阵技术是目前聚乙烯管道热熔接头内部缺陷检测的一种主流方法.提出了基于注意力机制的改进Faster-RCNN目标检测网络用于超声相控阵D扫图聚乙烯管接头内部缺陷检测.针对聚乙烯管道热熔接头内部超声相控阵D扫图小缺陷较多、特征信息容易丢失的问题,将残差网络(ResNet50)与特征金字塔网络(FPN)相结合作为骨干网络,并引入卷积注意力模块(CBAM)自适应细化特征.将SSD网络框架和Faster-RCNN 网络框架用于模型训练和测试,使用 VGG16、ResNet50、ResNet50+FPN、ACBM+ResNet50+FPN作为骨干网络依次对超声相控阵聚乙烯管道热熔对接接头内部缺陷样本进行训练对比.结果表明,改进的Faster-RCNN网络模型在聚乙烯管接头内部缺陷检测和分类方面有明显改进,对小缺陷的检测性能有了显著的提高.
More
Key words
Defect detecting,Ultrasonic phased array,Convolutional block attention module,Residual net-work,Feature pyramid
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined