CT-based Delta-Radiomics Nomogram to Predict Pathological Complete Response after Neoadjuvant Chemoradiotherapy in Esophageal Squamous Cell Carcinoma Patients
Journal of Translational Medicine(2024)
Qilu Hospital of Shandong University
Abstract
Abstract Background This study developed a nomogram model using CT-based delta-radiomics features and clinical factors to predict pathological complete response (pCR) in esophageal squamous cell carcinoma (ESCC) patients receiving neoadjuvant chemoradiotherapy (nCRT). Methods The study retrospectively analyzed 232 ESCC patients who underwent pretreatment and post-treatment CT scans. Patients were divided into training (n = 186) and validation (n = 46) sets through fivefold cross-validation. 837 radiomics features were extracted from regions of interest (ROIs) delineations on CT images before and after nCRT to calculate delta values. The LASSO algorithm selected delta-radiomics features (DRF) based on classification performance. Logistic regression constructed a nomogram incorporating DRFs and clinical factors. Receiver operating characteristic (ROC) and area under the curve (AUC) analyses evaluated nomogram performance for predicting pCR. Results No significant differences existed between the training and validation datasets. The 4-feature delta-radiomics signature (DRS) demonstrated good predictive accuracy for pCR, with α-binormal-based and empirical AUCs of 0.871 and 0.869. T-stage (p = 0.001) and differentiation degree (p = 0.018) were independent predictors of pCR. The nomogram combined the DRS and clinical factors improved the classification performance in the training dataset (AUCαbin = 0.933 and AUCemp = 0.941). The validation set showed similar performance with AUCs of 0.958 and 0.962. Conclusions The CT-based delta-radiomics nomogram model with clinical factors provided high predictive accuracy for pCR in ESCC patients after nCRT.
MoreTranslated text
Key words
Delta-radiomics,Neoadjuvant chemoradiotherapy,Esophageal squamous cell carcinoma,Pathological complete response,Computed tomography
PDF
View via Publisher
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined