Incorporating Machine Learning and PPI Networks to Identify Mitochondrial Fission-Related Immune Markers in Abdominal Aortic Aneurysms
Heliyon(2024)
Xiamen Univ
Abstract
PurposeThe aim of this study is to investigate abdominal aortic aneurysm (AAA), a disease characterised by inflammation and progressive vasodilatation, for novel gene-targeted therapeutic loci.MethodsTo do this, we used weighted co-expression network analysis (WGCNA) and differential gene analysis on samples from the GEO database. Additionally, we carried out enrichment analysis and determined that the blue module was of interest. Additionally, we performed an investigation of immune infiltration and discovered genes linked to immune evasion and mitochondrial fission. In order to screen for feature genes, we used two PPI network gene selection methods and five machine learning methods. This allowed us to identify the most featrue genes (MFGs). The expression of the MFGs in various cell subgroups was then evaluated by analysis of single cell samples from AAA. Additionally, we looked at the expression levels of the MFGs as well as the levels of inflammatory immune-related markers in cellular and animal models of AAA. Finally, we predicted potential drugs that could be targeted for the treatment of AAA.ResultsOur research identified 1249 up-regulated differential genes and 3653 down-regulated differential genes. Through WGCNA, we also discovered 44 genes in the blue module. By taking the point where several strategies for gene selection overlap, the MFG (ITGAL and SELL) was produced. We discovered through single cell research that the MFG were specifically expressed in T regulatory cells, NK cells, B lineage, and lymphocytes. In both animal and cellular models of AAA, the MFGs' mRNA levels rose.ConclusionWe searched for the AAA novel targeted gene (ITGAL and SELL), which most likely function through lymphocytes of the B lineage, NK cells, T regulatory cells, and B lineage. This analysis gave AAA a brand-new goal to treat or prevent the disease.
MoreTranslated text
Key words
Abdominal aortic aneurysm1,Immune microenvironment2,Machine learning3,Mitochondrial fission4,Single cell analysis5,Bioinformatics6
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined