Deep Convective Microphysics Experiment (DCMEX) Coordinated Aircraft and Ground Observations: Microphysics, Aerosol, and Dynamics During Cumulonimbus Development
EARTH SYSTEM SCIENCE DATA(2024)
Univ Leeds
Abstract
Cloud feedbacks associated with deep convective anvils remain highly uncertain. In part, this uncertainty arises from a lack of understanding of how microphysical processes influence the cloud radiative effect. In particular, climate models have a poor representation of microphysics processes, thereby encouraging the collection and study of observation data to enable better representation of these processes in models. As such, the Deep Convective Microphysics Experiment (DCMEX) undertook an in situ aircraft and ground-based measurement campaign of New Mexico deep convective clouds during July–August 2022. The campaign coordinated a broad range of instrumentation measuring aerosol, cloud physics, radar, thermodynamics, dynamics, electric fields, and weather. This paper introduces the potential data user to DCMEX observational campaign characteristics, relevant instrument details, and references to more detailed instrument descriptions. Also included is information on the structure and important files in the dataset in order to aid the accessibility of the dataset to new users. Our overview of the campaign cases illustrates the complementary operational observations available and demonstrates the breadth of the campaign cases observed. During the campaign, a wide selection of environmental conditions occurred, ranging from dry, northerly air masses with low wind shear to moist, southerly air masses with high wind shear. This provided a wide range of different convective growth situations. Of 19 flight days, only 2 d lacked the formation of convective cloud. The dataset presented (https://doi.org/10.5285/B1211AD185E24B488D41DD98F957506C; Facility for Airborne Atmospheric Measurements et al., 2024) will help establish a new understanding of processes on the smallest cloud- and aerosol-particle scales and, once combined with operational satellite observations and modelling, can support efforts to reduce the uncertainty of anvil cloud radiative impacts on climate scales.
MoreTranslated text
Key words
Aerosols,Aerodynamic Modeling,Aircraft Scheduling,Satellite Observations,Meteorological Observations
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined