Time-sensitive Prediction of NO2 Concentration in China Using an Ensemble Machine Learning Model from Multi-Source Data
Journal of Environmental Sciences(2024)
Shandong Univ
Abstract
Nitrogen dioxide (NO2) poses a critical potential risk to environmental quality and public health. A reliable machine learning (ML) forecasting framework will be useful to provide valuable information to support government decision-making. Based on the data from 1609 air quality monitors across China from 2014-2020, this study designed an ensemble ML model by integrating multiple types of spatial-temporal variables and three sub-models for time-sensitive prediction over a wide range. The ensemble ML model incorporates a residual connection to the gated recurrent unit (GRU) network and adopts the advantage of Transformer, extreme gradient boosting (XGBoost) and GRU with residual connection network, resulting in a 4.1%±1.0% lower root mean square error over XGBoost for the test results. The ensemble model shows great prediction performance, with coefficient of determination of 0.91, 0.86, and 0.77 for 1-hr, 3-hr, and 24-hr averages for the test results, respectively. In particular, this model has achieved excellent performance with low spatial uncertainty in Central, East, and North China, the major site-dense zones. Through the interpretability analysis based on the Shapley value for different temporal resolutions, we found that the contribution of atmospheric chemical processes is more important for hourly predictions compared with the daily scale predictions, while the impact of meteorological conditions would be ever-prominent for the latter. Compared with existing models for different spatiotemporal scales, the present model can be implemented at any air quality monitoring station across China to facilitate achieving rapid and dependable forecast of NO2, which will help developing effective control policies.
MoreTranslated text
Key words
Air quality prediction,Deep learning,Ensemble method,Nitrogen dioxide,Spatiotemporal covariates
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined