Magnitude and Direction of Temperature Variability Affect Hospitalization for Myocardial Infarction and Stroke: Population-Based Evidence from Guangzhou, China
FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING(2024)
Southern Medical University
Abstract
Temperature variability is an independent risk factor of cardiovascular diseases. ● Considerable cardiovascular disease burden can be attributed to HTV. ● The unmarried elderly is more susceptible, particularly in cold seasons. ● The effect of upward TV was acute while the impact of downward TV generally lags. Relationships between nonoptimal temperatures and cardiovascular disease (CVD) mortality have been well documented. However, evidence of the association between temperature variability (TV) and CVD morbidity is limited. This study aimed to quantify the risk and burden of CVD-related hospitalization associated with the magnitude and direction of TV. Data on meteorology and population-based hospitalizations for myocardial infarction (MI) and stroke were collected in Guangzhou, China, from 2013 to 2017. Hourly temperature variability (HTV) was measured as the standard deviation of hourly temperature records over specific exposure days. The direction (upward or downward) of HTV was defined as the average daily mean temperature change relative to that of the previous day during the exposure period. Quasi-Poisson regression was applied to assess the impact of HTV after adjusting for the daily mean temperature, and the hospitalization fractions attributable to HTV were calculated. A 1 °C-increase in HTV was significantly associated with a 2.24% and 1.72% increase in hospitalizations for MI and hemorrhagic stroke (HS) at lag 0–1 d, respectively, and a 1.55% increase in hospitalizations for ischemic stroke (IS) at lag 0–3 d. During the study period, 5.99%, 4.64%, and 4.53% of MI, HS, and IS hospitalizations, respectively, were attributable to HTV. The upward TV exerts acute effects on CVD hospital admissions, whereas the impact of downward TV generally lags. These findings highlight the importance of the magnitude and direction of temperature fluctuations, in addition to the mean level, in assessing the adverse health impacts of temperature variations.
MoreTranslated text
Key words
Hourly temperature variability,Cardiovascular,Hospitalization,Direction,China
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined