Critical View on Oligo(dt)-Based RNA-seq: Bias Arising, Modeling, and Mitigating
Genetics(2023)
Shenzhen Univ
Abstract
The precise biological interpretation of oligo(dT)-based RNA sequencing (RNA-seq) datasets, particularly in single-cell RNA-seq (scRNA-seq), is invaluable for understanding complex biological systems. However, the presence of biases can lead to misleading results in downstream analysis. This study has now identified two additional biases that are not accounted for in established bias models: poly(A)-tail length bias and fixed-position GC-content bias. These biases have a significant negative impact on the overall quality of oligo(dT)-based RNA-seq data. To address these biases, we have developed a universal bias-mitigating method based on the lower-affinity binding of short and nonanchored oligo(dT) primers to poly(A) tails. This method significantly reduces poly(A) length bias and completely eliminates fixed-position GC bias. Furthermore, the use of short oligo(dT) with impartial binding behavior toward the diverse poly(A) tails renders RNA-seq with more reliable measurements. The findings of this study are particularly beneficial for scRNA-seq datasets, where accurate benchmarking is critical.
MoreTranslated text
Key words
RNA-seq,poly(A)-tail length bias,fixed-position GC bias,and poly(A)-tailed transcript
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined