High-sensitivity Transition-Edge-sensed Bolometers: Improved Speed and Characterization with AC and DC Bias
JOURNAL OF APPLIED PHYSICS(2023)
CALTECH
Abstract
We report on efforts to improve the speed of low-G far-infrared transition-edged-sensed bolometers. We use a fabrication process that does not require any dry etch steps to reduce heat capacity on the suspended device and measure a reduction in the detector time constant. However, we also measure an increase in the temperature-normalized thermal conductance (G), and a corresponding increase in the noise-equivalent power (NEP). We employ a new near-IR photon-noise technique using a near-IR laser to calibrate the frequency-domain multiplexed AC system and compare the results to a well-understood DC circuit. We measure an NEP white noise level of 0.8 aW/rtHz with a 1/f knee below 0.1 Hz and a time constant of 3.2 ms.
MoreTranslated text
Key words
Transition-Edge Sensors,Hot-Electron Bolometers,Bolometer Camera,Near-Field Heat Transfer
PDF
View via Publisher
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined