WeChat Mini Program
Old Version Features

Deep Learning Algorithms to Detect Diabetic Kidney Disease from Retinal Photographs in Multiethnic Populations with Diabetes

JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION(2024)

Natl Univ Singapore

Cited 6|Views42
Abstract
Objective: To develop a deep learning algorithm (DLA) to detect diabetic kideny disease (DKD) from retinal photographs of patients with diabetes, and evaluate performance in multiethnic populations. Materials and methods: We trained 3 models: (1) image-only; (2) risk factor (RF)-only multivariable logistic regression (LR) model adjusted for age, sex, ethnicity, diabetes duration, HbA1c, systolic blood pressure; (3) hybrid multivariable LR model combining RF data and standardized z-scores from image-only model. Data from Singapore Integrated Diabetic Retinopathy Program (SiDRP) were used to develop (6066 participants with diabetes, primary-care-based) and internally validate (5-fold cross-validation) the models. External testing on 2 independent datasets: (1) Singapore Epidemiology of Eye Diseases (SEED) study (1885 participants with diabetes, population-based); (2) Singapore Macroangiopathy and Microvascular Reactivity in Type 2 Diabetes (SMART2D) (439 participants with diabetes, cross-sectional) in Singapore. Supplementary external testing on 2 Caucasian cohorts: (3) Australian Eye and Heart Study (AHES) (460 participants with diabetes, cross-sectional) and (4) Northern Ireland Cohort for the Longitudinal Study of Ageing (NICOLA) (265 participants with diabetes, cross-sectional). Results: In SiDRP validation, area under the curve (AUC) was 0.826(95% CI 0.818-0.833) for image-only, 0.847(0.840-0.854) for RF-only, and 0.866(0.859-0.872) for hybrid. Estimates with SEED were 0.764(0.743-0.785) for image-only, 0.802(0.783-0.822) for RF-only, and 0.828(0.810-0.846) for hybrid. In SMART2D, AUC was 0.726(0.686-0.765) for image-only, 0.701(0.660-0.741) in RF-only, 0.761(0.724-0.797) for hybrid. Discussion and conclusion: There is potential for DLA using retinal images as a screening adjunct for DKD among individuals with diabetes. This can value-add to existing DLA systems which diagnose diabetic retinopathy from retinal images, facilitating primary screening for DKD.
More
Translated text
Key words
machine learning,diabetes,artificial intelligence,retina,screening,renal insufficiency
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined