WeChat Mini Program
Old Version Features

An Evolutionary Timescale for Bacteria Calibrated Using the Great Oxidation Event

biorxiv(2023)

Department of Biological Physics

Cited 0|Views2
Abstract
Most of life’s diversity and history is microbial but it has left a meagre fossil record, greatly hindering understanding of evolution in deep time. However, the co-evolution of life and the Earth system has left signatures of bacterial metabolism in the geochemical record, most conspicuously the Great Oxidation Event (GOE) ∼2.33 billion years ago (Ga, (Poulton et al. 2021)), in which oxygenic photosynthesis and tectonism (Eguchi, Seales, and Dasgupta 2019) transformed Earth’s biosphere from dominantly anaerobic to aerobic. Here, we combine machine learning and phylogenetic reconciliation to infer ancestral transitions to aerobic lifestyles during bacterial evolution. Linking these transitions to the GOE provides new constraints to infer the timetree of Bacteria. We find that extant bacterial phyla are truly ancient, having radiated in the Archaean and the Proterozoic: the oldest include Bacillota (Firmicutes), which radiated 3.1-3.7 Ga, Cyanobacteria (3.3-3.5 Ga) and Patescibacteria (3-3.5 Ga). We show that most bacterial phyla were ancestrally anaerobic and that most transitions to an aerobic lifestyle post-dated the GOE. Our analyses trace oxygen production and consumption back to Cyanobacteria. From that starting point, horizontal transfer seeded aerobic lifestyles across bacterial diversity over hundreds of millions of years. Our analyses demonstrate that the diversification of aerobes proceeded in two waves corresponding to the GOE and to a second sustained rise in atmospheric O 2 at the dawn of the Palezoic (Krause et al. 2022).
More
Translated text
Key words
Microbial Ecology
PDF
Bibtex
收藏
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined