短期胰岛素泵强化治疗联合自我血糖监测对T2DM患者血糖控制效果及相关因素
Chinese Journal of Gerontology(2023)
Abstract
目的 探讨短期胰岛素泵强化治疗联合自我血糖监测(SMBG)对 2 型糖尿病(T2DM)患者血糖控制的效果及相关因素.方法 回顾性分析82 例T2DM患者一般临床资料,均给予短期胰岛素泵强化治疗联合SMBG,记录患者治疗前后糖脂代谢变化,并根据血糖控制情况分为控制良好组与控制欠佳组,对比两组临床资料,分析影响其血糖控制效果的相关因素.结果 治疗后1 w T2DM患者空腹血糖(FBG)、胰岛素抵抗指数(HOMA-IR)、餐后2h血糖(2 h PBG)、糖化血红蛋白(HbA1c)水平较治疗前显著降低(P<0.05),稳态模型胰岛β细胞功能指数(HOMA-β)较治疗前显著升高,但治疗后 6 个月FBG、HOMA-IR、2 h PBG、HbA1c水平较治疗后1w有所升高,HOMA-β降低,但仍明显优于治疗前(P<0.05);治疗后1w总胆固醇(TC)、三酰甘油(TG)、低密度脂蛋白胆固醇(LDL-C)水平较治疗前显著降低(P<0.05),HDL-C较治疗前显著升高,但治疗后6 个月TC、TG、LDL-C水平较治疗后1w有所升高,高密度脂蛋白胆固醇(HDL-C)降低,但仍明显优于治疗前(P<0.05);治疗后6 个月,30 例血糖控制良好,52 例血糖控制欠佳,且经Logistic回归分析发现,体质量指数、糖尿病饮食、HbA1c、胰岛素剂量、2 h PBG是影响T2DM患者血糖控制欠佳的独立危险因素,运动时间、复诊频率、血糖监测频率是保护因素(P<0.05).结论 短期胰岛素泵强化治疗联合SMBG在T2DM患者短期血糖控制中效果较佳,对改善糖脂代谢有积极作用,但体质量、糖尿病饮食、运动时间、复诊频率、血糖监测频率、胰岛素剂量及HbA1c、2 h PBG水平均会对血糖控制情况产生影响,临床需给予针对性措施进行干预,稳定血糖水平.
More求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined