WeChat Mini Program
Old Version Features

葡萄霜霉病抗病性鉴定方法及品种抗病性测定

Plant Protection(2018)

Cited 10|Views5
Abstract
本文通过对葡萄霜霉病抗病性鉴定方法进行优化,建立了一种更为快捷、方便、可靠的鉴定方法,并对32个葡萄品种对霜霉病抗病性进行了鉴定,为葡萄抗病品种的选育和应用提供依据.结果显示:以田间混合的霜霉病菌为接种体采用叶盘法鉴定葡萄品种的抗病性更加快捷、方便.供试的32个葡萄品种对葡萄霜霉病的抗性存在显著差异.其中免疫品种有‘康拜尔早生’;高抗的有‘阳光玫瑰’、‘美乐’、‘Ms27-31’等5个品种;中抗的有‘贝达’、‘小芒森’、‘2E-16-2’等6个品种;低抗的有‘瑞都红玉’、‘早黑宝’、‘摩尔多瓦’等10个品种;感病的有‘里扎马特’、‘玫瑰香’、‘香妃’等10个品种.
More
Translated text
上传PDF
Bibtex
收藏
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper

要点】:本研究旨在建立一种更快速、方便、可靠的葡萄霜霉病抗性识别方法,并评估了32个葡萄品种对霜霉病的抗性差异,创新点在于优化了抗性识别方法并首次提出混合菌株和叶盘法在抗性识别中的高效性。

方法】:通过优化抗性识别方法,使用混合菌株和叶盘法进行葡萄霜霉病抗性鉴定。

实验】:实验对32个葡萄品种进行了抗性测试,使用混合菌株和叶盘法,结果表明各品种间抗性差异显著,其中‘Campbell early’表现出免疫性,‘Shine-Muscat’等5个品种高度抗病,‘Beta’等6个品种中度抗病,‘Ruidu Hongyu’等10个品种抗性较弱,‘Rizamat’等10个品种易感病。