Characterizing Volcanic Tremor Sources Associated with Collapses in Halema‘uma‘u Crater at the Beginning of the 2018 Kilauea Eruption
openalex(2021)
Abstract
We analyze data from one tiltmeter and twelve broadband seismic stations recorded at the beginning of the 2018 Kilauea eruption, to provide an integrated view of distinct tremor sources that preceded and accompanied this eruption. Studying the beginning of the eruption is challenging because of the diversity and complexity of signals that were recorded during this phase. But such undertaking represents a key aspect for understanding the dynamics of the different processes that took place at the start of the lava lake withdrawal on May 2 and during the twelve major collapses that occurred in Halema‘uma‘u Crater through May 26. The application of a network-based method to automatically detect and locate seismic tremor, combined with physical modeling of the underlying source processes, enables a characterization of these tremor sources in unprecedented detail. Our analyses document one tremor source active during the period preceding the eruption, which is attributed to the quasi-steady radiation from a shallow hydrothermal system located at the south-southwest edge of Halema‘uma‘u Crater. These analyses further document two newly described sequences of gliding tremor. The first sequence is attributed to progressive jerky intrusions of a rock piston into a shallow hydrothermal reservoir between May 7 and May 17. The second sequence is attributed to the gradual degassing of a bubbly magma within an east striking dike below Halema‘uma‘u Crater, impacted by repeated roof collapses, and resulting in a quasi to totally degassed magma by May 26.
MoreTranslated text
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined