WeChat Mini Program
Old Version Features

Predicting China's Maize Yield Using Multi-Source Datasets and Machine Learning Algorithms

REMOTE SENSING(2024)

Nanjing Univ Informat Sci & Technol | Beijing Normal Univ

Cited 0|Views50
Abstract
A timely and accurately predicted grain yield can ensure regional and global food security. The scientific community is gradually advancing the prediction of regional-scale maize yield. However, the combination of various datasets while predicting the regional-scale maize yield using simple and accurate methods is still relatively rare. Here, we have used multi-source datasets (climate dataset, satellite dataset, and soil dataset), lasso algorithm, and machine learning methods (random forest, support vector, extreme gradient boosting, BP neural network, long short-term memory network, and K-nearest neighbor regression) to predict China’s county-level maize yield. The use of multi-sourced datasets advanced the predicting accuracy of maize yield significantly compared to the single-sourced dataset. We found that the machine learning methods were superior to the lasso algorithm, while random forest, extreme gradient boosting, and support vector machine represented the most preferable methods for maize yield prediction in China (R2 ≥ 0.75, RMSE = 824–875 kg/ha, MAE = 626–651 kg/ha). The climate dataset contributed more to the prediction of maize yield, while the satellite dataset contributed to tracking the maize growth process. However, the methods’ accuracies and the dominant variables affecting maize growth varied with agricultural regions across different geographic locations. Our research serves as an important effort to examine the feasibility of multi-source datasets and machine learning techniques for regional-scale maize yield prediction. In addition, the methodology we have proposed here provides guidance for reliable yield prediction of different crops.
More
Translated text
Key words
China,maize yield,machine learning,multi-source datasets,prediction
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined