WeChat Mini Program
Old Version Features

Identification of Long Non-Coding RNAs in Response to Downy Mildew Stress in Grape

FRUIT RESEARCH(2022)

State Key Laboratory of Crop Stress Biology for Arid Areas

Cited 0|Views16
Abstract
The importance of long non-coding RNA in plants has been reported more frequently in recent years, but there has been few specific reports on lncRNAs in grape, especially in terms of disease resistance. We performed RNA-seq on grape leaves of two species (Vitis piasezkii accession Liuba-8, Vitis vinifera cultivar Pinot Noir) sampled at six time points after inoculation, and 4011 possible lncRNAs were identified. The characteristics of grape lncRNAs were analyzed, and it was found that lncRNAs showed relatively consistent characteristics with the reported lncRNAs in model plants. 3,643 lncRNAs were predicted that have cis-regulatory effects on 6,622 protein-coding genes and 91 DElncRNAs were revealed to be coexpressed with its trans-regulated coding genes. One hundred and seventeen grape microRNAs were predicted to potentially target 184 lncRNAs and six lncRNAs were predicted to be endogenous targeting mimics of 15 microRNAs, among which some miRNAs have been reported in grape disease resistance. At six time points, LncRNAs showed different expression levels and different expression patterns in two species, suggesting that lncRNAs may have a certain regulatory effect on resistance to downy mildew in grape. Finally, a lncRNA MSTRG.12742.1 which may play a positive role in grape downy mildew resistance was verified by transient transformation. Its potential target gene, VIT_204s0008g02671.1, encodes cryptochrome DASH which may regulate stomatal opening and closing of plant leaves. In this study, we provided the systematic identification of lncRNAs in the course of downy mildew of grape, laying a foundation for further studies on downy mildew and lncRNAs of grape in the future.
More
Translated text
Key words
downy mildew,long non-coding rnas,rnaseq,grape
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined