基于示范样地实际倒伏样本的小麦抗倒机制解析
Journal of Triticeae Crops(2023)
南京农业大学
Abstract
为解析影响小麦倒伏发生的关键因子与内在机制,基于示范样地,选择不同养分管理下实际倒伏三块样本(1个高倒伏田块和2个低倒伏田块,养分管理方式分别为普通化肥深施、普通化肥撒施和缓控释肥深施),对小麦株型、倒伏节间的形态、组分及维管束数量、根系构型、土壤养分供应等进行比较分析.结果表明,在同等氮肥施用量与相同播种密度下,化肥深施田块(D-CF)的倒伏率高于化肥撒施(M-CF)和缓控释肥深施田块(D-RCU).茎基部节间是小麦倒伏发生的主要部位,节间越长,倒伏高度越高.高倒伏样本田块(D-CF)的株高显著高于M-CF和D-RCU田块,分别增加15.7%和15.1%,且D-CF田块的穗重与茎鞘叶重比最高.不同田块倒伏节间(茎基部节间)的外径、壁厚均无显著差异,但高倒伏田块D-CF的茎基部节间维管束面积和数量均低于低倒伏田块,较M-CF减少8.7%和9.0%,较D-RCU降低了 11.8%和5.9%,且纤维素、半纤维素与木质素的含量显著低于D-RCU田块.D-CF田块的根尖数显著高于两低倒伏田块,且根系总长与表面积显著高于D-RCU田块.D-CF田块的5~10、10~15和15~20 cm 土层的速效氮含量均最高.经相关性分析,倒伏率与株高呈显著正相关,与倒伏节间维管束数量及半纤维素、纤维素与木质素的总含量均呈显著负相关.株高分别与根系总根长、根尖数及5~20 cm 土壤速效氮含量呈极显著或显著正相关,而维管束数量与5~10 cm 土壤速效氮含量呈显著负相关,纤维素及木质素含量均与5~20 cm 土壤速效氮含量呈显著负相关,半纤维素含量则与10~15 cm 土壤速效氮含量呈显著负相关.受田间小麦根系构型及中下层土壤速效氮含量影响,株高和茎基部节间维管束数量及三素(半纤维素、纤维素、木质素)含量是小麦倒伏风险的主要影响因子.
MoreTranslated text
Key words
Wheat,Lodging,Plant architecture,Vascular tissue,Nutrient supply
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined