WeChat Mini Program
Old Version Features

超声多参数联合评分在甲状腺功能异常孕妇的新生儿甲状腺功能异常的预测价值

Journal of China Clinic Medical Imaging(2023)

江苏省中西医结合医院

Cited 0|Views10
Abstract
目的:探讨包括胎儿甲状腺形态学及血流分布、胎儿心率、骨成熟度在内的超声多参数联合评分在甲状腺功能异常孕妇的新生儿出现甲状腺功能异常的预测价值.方法:选取2017年1月—2021年12月在江苏省中西医结合医院超声科进行胎儿甲状腺功能评估的85例临床诊断为甲状腺功能异常的孕妇,在常规进行胎儿甲状腺形态学及血流分布检查的基础上,进一步进行胎儿心率测量、胎儿骨成熟度检测.出生后抽血检查新生儿甲状腺功能,了解是否出现新生儿甲状腺功能异常.将单纯应用超声观察胎儿甲状腺形态学及血流(方法1),以及将胎儿甲状腺形态学及血流分布检查联合胎儿心率测量、胎儿骨成熟度检测进行多参数评分(方法2)两种方法分别对新生儿甲状腺功能情况进行评估.采用受试者操作特征(ROC)曲线法评估并比较2种评估方法对甲状腺功能异常孕妇宫内胎儿出生后发生新生儿甲状腺功能异常的预测价值.结果:单纯评估形态法(方法1)和联合评分法(方法2)阳性组的新生儿甲状腺功能异常发生率均明显高于相应的阴性组,差异均有统计学意义(P<0.001).预测出现新生儿甲状腺功能异常发生风险时,单纯胎儿甲状腺形态学及血流评分,胎儿甲状腺形态学及血流分布检查联合胎儿心率测量,胎儿骨成熟度检测,胎儿宫内运动监测联合评分ROC曲线下面积(AUC)值分别是0.715和0.918,两者间差异存在统计学意义(Z=2.361,P=0.018 2).两种方法的特异性、准确性以及阳性预测值的差异存在统计学意义.结论:超声多参数联合评分法在预测新生儿发生甲状腺功能异常的准确率较高,具有一定临床价值.
More
Translated text
Key words
Thyroid Gland,Ultrasonography,Prenatal
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined