WeChat Mini Program
Old Version Features

在临床实际诊疗下的心血管外科案例教学法对加强医学生临床思维的探索与实践

wf(2023)

Cited 0|Views46
Abstract
目的 探讨心脏外科学按临床实际诊疗流程开展案例教学法(CBL)对本科医学生临床思维的培养及教学应用效果.方法 选取本单位2018级五年制临床医学专业的60名学生,随机分为两组,选择心脏瓣膜病专题型案例,对照组30名授课运用传统CBL教学方法,以病例提出问题由学生课下进行分组学习、课堂讨论;研究组30名授课按照临床实际接诊、问诊、查体、辅助检查、诊断、治疗、康复整套流程进行课堂设计,每个环节小组协作、分次汇报、集中讨论.在授课过程中保证授课内容参照同一版教学大纲,授课老师相同.通过小结考试的方法得到两组的笔试成绩,通过课后实践评价两组学生临床思维培养效果,通过问卷调查得到学生的反馈评价.分析两组学生的成绩和问卷调查评价效果.结果 两组小结理论考试成绩差异无统计学意义(P>0.05);课后实践考核结果显示,研究组医患沟通、病历撰写、查体规范、检查检验、治疗方案设计得分均高于对照组,差异有统计学意义(P<0.05);问卷调查结果显示研究组学生对本次教学激发学习兴趣、临床思维培养、创新能力提高、自主学习能力、临床实践应用方面的满意度均优于对照组,差异具有统计学意义(P<0.05).结论 与传统CBL教学模式相比,按临床实际诊疗流程开展CBL教学能够加强医学生临床思维培养,更好地激发自主学习能力和学习兴趣,并有效提高医学生临床实践能力,达到临床教学的目的.
More
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined