WeChat Mini Program
Old Version Features

Development of an Electronic Nose to Characterize Water Quality Parameters and Odor Concentration of Wastewater Emitted from Different Phases in a Wastewater Treatment Plant

Water Research(2023)

Jilin Univ

Cited 19|Views23
Abstract
For public health consideration, it is important to ensure the wastewater discharged from wastewater treatment plant is within the regulatory limits. This problem can be effectively solved by improving the accuracy and rapid characterization of water quality parameters and odor concentration of wastewater. In this paper, we proposed a novel solution to realize the precisive analysis of water quality parameters and odor concentration of wastewater by the electronic nose device. The main work of this paper was divided into three steps: 1) recognizing wastewater samples qualitatively from different sampling points, 2) analyzing the correlation between electronic nose response signals and water quality parameters and odor concentration, and 3) predicting the odor concentration and water quality parameters quantitatively. Combined with different feature extraction methods, support vector machine and linear discriminant analysis were applied as classifiers to recognize samples at different sampling points, which reported the best recognition rate of 98.83%. Partial least squares regression was applied to complete the second step, and R2 was reaching 0.992. As for the third step, ridge regression was used to predict water quality parameters and odor concentration with the RMSE less than 0.9476. Thus, electronic noses can be applied to determine water quality parameters and odor concentrations in the effluent discharged from wastewater plants.
More
Translated text
Key words
Wastewater treatment plants,Electronic nose,Water quality parameters,Odor concentration
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined