COLA: Improving Conversational Recommender Systems by Collaborative Augmentation.
THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 4(2023)
Hong Kong Polytech Univ
Abstract
Conversational recommender systems (CRS) aim to employ natural language conversations to suggest suitable products to users. Understanding user preferences for prospective items and learning efficient item representations are crucial for CRS. Despite various attempts, earlier studies mostly learned item representations based on individual conversations, ignoring item popularity embodied among all others. Besides, they still need support in efficiently capturing user preferences since the information reflected in a single conversation is limited. Inspired by collaborative filtering, we propose a collaborative augmentation (COLA) method to simultaneously improve both item representation learning and user preference modeling to address these issues. We construct an interactive user-item graph from all conversations, which augments item representations with user-aware information, i.e., item popularity. To improve user preference modeling, we retrieve similar conversations from the training corpus, where the involved items and attributes that reflect the user's potential interests are used to augment the user representation through gate control. Extensive experiments on two benchmark datasets demonstrate the effectiveness of our method. Our code and data are available at https://github.com/DongdingLin/COLA.
MoreTranslated text
Key words
Collaborative Filtering,Context-Aware Recommender Systems,Content-Based Recommendation,Trust-Aware Recommender Systems,Word Representation
PDF
View via Publisher
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined