Impact of $\lambda_b\to \lambda_c\tau\nu$ Measurement on New Physics in $b\to C \, L \nu$ Transitions
arXiv ยท Phenomenology
Abstract
Measurements of the branching ratios of $B \to D^{(*)}\tau\bar\nu/B \to D^{(*)}\ell\bar\nu$ and $B_c\to J/\psi\, \tau\bar\nu/B_c\to J/\psi\, \ell\bar\nu$ by the BaBar, Belle and LHCb collaborations consistently point towards an abundance of taus compared to channels with light leptons. However, the ratio $\Lambda_b \to\Lambda_c \tau\bar\nu/\Lambda_b \to\Lambda_c \ell\bar\nu$ shows a relative deficit in taus. In this paper, we critically address whether data still points towards a coherent pattern of deviations, in particular in light of the sum rule relating these decays in a model-independent way. We find that no common new physics explanation of all ratios is possible (within $2\sigma$ or $1.5\sigma$, depending on the ${\cal R}(\Lambda_c)$ normalization to light lepton channels). While this inconsistency could be a statistical fluctuation, further measurements are required in order to converge to a coherent pattern of experimental results.
MoreTranslated text
PDF
View via Publisher
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined