Headwater Streams and Inland Wetlands: Status and Advancements of Geospatial Datasets and Maps Across the United States
EARTH-SCIENCE REVIEWS(2022)
US EPA
Abstract
Headwater streams and inland wetlands provide essential functions that support healthy watersheds and downstream waters. However, scientists and aquatic resource managers lack a comprehensive synthesis of na-tional and state stream and wetland geospatial datasets and emerging technologies that can further improve these data. We conducted a review of existing United States (US) federal and state stream and wetland geospatial datasets, focusing on their spatial extent, permanence classifications, and current limitations. We also examined recent peer-reviewed literature for emerging methods that can potentially improve the estimation, representa-tion, and integration of stream and wetland datasets. We found that federal and state datasets rely heavily on the US Geological Survey's National Hydrography Dataset for stream extent and duration information. Only eleven states (22%) had additional stream extent information and seven states (14%) provided additional duration information. Likewise, federal and state wetland datasets primarily use the US Fish and Wildlife Service's Na-tional Wetlands Inventory (NWI) Geospatial Dataset, with only two states using non-NWI datasets. Our synthesis revealed that LiDAR-based technologies hold promise for advancing stream and wetland mapping at limited spatial extents. While machine learning techniques may help to scale-up these LiDAR-derived estimates, chal-lenges related to preprocessing and data workflows remain. High-resolution commercial imagery, supported by public imagery and cloud computing, may further aid characterization of the spatial and temporal dynamics of streams and wetlands, especially using multi-platform and multi-temporal machine learning approaches. Models integrating both stream and wetland dynamics are limited, and field-based efforts must remain a key component in developing improved headwater stream and wetland datasets. Continued financial and partnership support of existing databases is also needed to enhance mapping and inform water resources research and policy decisions.
MoreTranslated text
Key words
Headwaters,Inland wetlands,Mapping,Streamflow permanence,CONUS,NHD,NWI,Remote sensing,Field assessments,LiDAR,Dynamic modeling,Machine learning
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined