WeChat Mini Program
Old Version Features

Crowdsourced Fact-Checking at Twitter

Proceedings of the 31st ACM International Conference on Information &amp Knowledge Management(2022)

Eurecom

Cited 8|Views3
Abstract
Fact-checking is one of the effective solutions in fighting online misinformation. However, traditional fact-checking is a process requiring scarce expert human resources, and thus does not scale well on social media because of the continuous flow of new content to be checked. Methods based on crowdsourcing have been proposed to tackle this challenge, as they can scale with a smaller cost, but, while they have shown to be feasible, have always been studied in controlled environments. In this work, we study the first large-scale effort of crowdsourced fact-checking deployed in practice, started by Twitter with the Birdwatch program. Our analysis shows that crowdsourcing may be an effective fact-checking strategy in some settings, even comparable to results obtained by human experts, but does not lead to consistent, actionable results in others. We processed 11.9k tweets verified by the Birdwatch program and report empirical evidence of i) differences in how the crowd and experts select content to be fact-checked, ii) how the crowd and the experts retrieve different resources to fact-check, and iii) the edge the crowd shows in fact-checking scalability and efficiency as compared to expert checkers.
More
Translated text
PDF
Bibtex
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined