WeChat Mini Program
Old Version Features

应用二代测序技术对甲状腺乳头状癌突变基因谱及临床特征相关性的研究

Chinese Journal of Experimental Surgery(2022)

Cited 0|Views10
Abstract
目的 分析甲状腺乳头状癌组织标本的分子特征,探究其基因突变谱与其临床特征的相关性.方法 收集2020年7月至2021年5月于苏州大学附属第二医院手术且病理确认为甲状腺乳头状癌的71例患者(共79份)新鲜肿瘤组织标本,并统计其临床及病理学资料.应用二代测序技术对肿瘤组织标本进行检测,研究其病理性突变基因特征,并使用Fisher精确概率检验方法分析其与临床病理特征之间的相关性.结果 95%的新鲜肿瘤组织标本被检测到不同的病理性突变或融合,15%的新鲜肿瘤组织标本存在至少2种不同的病理性基因共突变或融合;甲状腺乳头状癌患者中,有病理性突变或融合组的中央组淋巴结转移率明显高于无病理性突变或融合组(62.7%比0,P<0.05).结论 具有病理性基因突变或融合的患者更容易出现中央组淋巴结转移,据此我们认为术前对肿瘤组织进行二代测序分析其分子特征有利于准确判断中央组淋巴结转移情况、方便制定精准的手术方案.
More
Translated text
Key words
Breast cancer,Insulin-like growth factor binding protein-6,Proliferation cell nuclear antigen,Pathology
求助PDF
上传PDF
Bibtex
收藏
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined