Data-Driven Enhancement of ZT in SnSe-Based Thermoelectric Systems
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY(2022)
Korea Res Inst Chem Technol KRICT
Abstract
Doping and alloying are fundamental strategies to improve the thermoelectric performance of bare materials. However, identifying outstanding elements and compositions for the development of high-performance thermoelectric materials is challenging. In this study, we present a data-driven approach to improve the thermoelectric performance of SnSe compounds with various doping. Based on the newly generated experimental and computational dataset, we built highly accurate predictive models of thermoelectric properties of doped SnSe compounds. A well-designed feature vector consisting of the chemical properties of a single atom and the electronic structures of a solid plays a key role in achieving accurate predictions for unknown doping elements. Using the machine learning predictive models and calculated map of the solubility limit for each dopant, we rapidly screened high-dimensional material spaces of doped SnSe and evaluated their thermoelectric properties. This data-driven search provided overall strategies to optimize and improve the thermoelectric properties of doped SnSe compounds. In particular, we identified five dopant candidate elements (Ge, Pb, Y, Cd, and As) that provided a high ZT exceeding 2.0 and proposed a design principle for improving the ZT by Sn vacancies depending on the doping elements. Based on the search, we proposed yttrium as a new high-ZT dopant for SnSe with experimental confirmations. Our research is expected to lead to novel high-ZT thermoelectric material candidates and provide cutting-edge research strategies for materials design and extraction of design principles through data-driven research.
MoreTranslated text
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined