WeChat Mini Program
Old Version Features

Impact of Flow Rate on Dynamic Imbibition in Fractured Tight Sandstone Cores

PETROLEUM SCIENCE(2022)

Shandong Key Laboratory of Oilfield Chemistry (China University of Petroleum (East China))

Cited 9|Views14
Abstract
Dynamic imbibition,which is significantly affected by flow rate,plays an important role in the development of tight oil.This study investigated the impact of flow rate on dynamic imbibition in fractured tight sandstone cores via online nuclear magnetic resonance core-flooding experiments.The oil expulsion efficiency and capillary number of multiscale pores were quantitatively analyzed to elucidate the influence of flow rate on the oil recovery during dynamic imbibition.The pores of the cores used were divided into micropores(0.01-1.00 μm in diameter),mesopores(1.00-30.00 μm in diameter),and macropores(30.00-400.00 μm in diameter) by matching the T 2 spectrum and the mercury intrusion data.The volume proportion of micropores was 52.0%,and that of macropores was 19.0%.The total oil recovery of the core was found to reach 29.8% at the optimal flow rate of 0.1 mL/min.At the optimal flow rate,the oil recovery of micropores reached 50.4%,followed by that of macropores(28.6%),and that of mesopores was the lowest(15.8%).The oil expulsion efficiency,the capillary number,and the contribution to total oil recovery of micropores significantly increased with the decrease in flow rate,while those of macropores decreased.This was caused by the synergy of capillary force and displacement pressure.During dynamic imbibition at a low flow rate,the oil in micropores was effectively expelled driven by capillary force,and the effect of displacement pressure was weak,leading to large amounts of remaining oil trapped in macropores.On the contrary,when the flow rate was too high,large amounts of remaining oil would be trapped in micropores.Only at a moderate flow rate did the capillary force and displacement pressure both have significant effects on oil expulsion,and the oil in different sized pores was effectively expelled,thus generating a relatively high total oil recovery.
More
Translated text
Key words
Tight oil,Dynamic imbibition,Flow rate,Oil recovery,Nuclear magnetic resonance
上传PDF
Bibtex
收藏
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined