一类含烷基磺酸根的表面活性单体及其聚合物的合成及性能研究
Chemistry(2022)
Abstract
针对疏水缔合聚合物水溶性不足的问题,本文合成了三种含烷基磺酸根的阴离子型表面活性单体2-丙烯酰胺基辛烷基磺酸钠(NaAMC8S)、2-丙烯酰胺基十二烷基磺酸钠(NaAMC12S)和2-丙烯酰胺基十八烷基磺酸钠(NaAMC18S),通过氢谱、碳谱、高分辨质谱对其结构进行了表征.通过表面张力法和电导率法测定了 NaAMC8S和NaAMC12S的临界胶束浓度;用荧光探针技术研究了其增溶作用;以偶氮二异丁脒盐酸盐(AIBA)为引发剂,在水溶液中研究了丙烯酰胺(AM)分别与NaAMC8S、NaAMC12S的二元共聚反应,通过控制AM 与 NaAMC8S、NaAMC12S 的投料比制备得到两个系列聚合物 P(AM/NaAMC8S)、P(AM/NaAMC12S),研究了表面活性单体含量对聚合物疏水缔合作用及耐温抗盐性能的影响.实验结果表明,NaAMC8S、NaAMC12S具有良好的表面活性和增溶作用,聚合物P(AM/NaAMC8S)、P(AM/NaAMC12S)具有显著的疏水缔合作用,P(AM/NaAMC12S)的耐温抗盐性能明显优于用AM和商用单体2-丙烯酰胺-2-甲基丙磺酸钠(NaAMPS)共聚制备的聚合物P(AM/NaAMPS).
More求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined