茉莉花萜类合成酶基因的转录组鉴定及响应外源激素的表达研究
Biotechnology Bulletin(2022)
Abstract
探究萜类合成酶(Terpenoid synthase,TPS)在茉莉花萜类化合物合成中的作用及外源激素处理下的表达模式,为深入研究茉莉花TPS基因家族的功能及在外源激素胁迫中的作用奠定理论依据.以茉莉花转录组数据为基础,利用生物信息学方法对茉莉花TPS家族进行鉴定及分析,采用实时荧光定量分析茉莉花TPS家族在茉莉花不同组织中及不同激素处理下的表达模式.结果显示,茉莉花TPS家族含有8个同时具有Terpene_synthase和Terpene_synthase_C结构域的家族成员,分别命名为JsTPS1-JsTPS8.茉莉花TPS成员的蛋白长度为163-844个氨基酸;分子量为19 103.6-96 887.4 kD,主要定位于细胞质和叶绿体中.系统进化树显示茉莉花TPS基因家族可以分为4个亚家族(a、b、e/f、g);qRT-PCR结果显示,JsTPS1、JsTPS2、JsTPS3、JsTPS5、JsiTPS7基因在花瓣中高表达;经 IAA、GA、SA 和 MeJA 处理后 JsTPS1、JsTPS2、JsTPS3、JsTPS5、JsTPS6和 JsTPS7的表达量受到不同程度的诱导表达.MeJA处理可显著诱导6个茉莉花TPS基因的上调表达,相对表达量最大值出现在4-9 h;4种激素的诱导作用由大到小分别为:MeJA>IAA>GA>SA.茉莉花含有8个TPS家族成员,茉莉花TPS基因主要在花瓣中高表达且与茉莉花香气形成关系密切,能够被IAA和MeJA诱导上调表达,GA和SA可能会抑制部分茉莉花TPS基因的表达.
More求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined