Prediction of Antimicrobial Minimal Inhibitory Concentrations for Neisseria Gonorrhoeae Using Machine Learning Models.
Saudi Journal of Biological Sciences(2022)
King Abdulaziz Univ
Abstract
The lowest concentration of an antimicrobial agent that can inhibit the visible growth of a microorganism after overnight incubation is called as minimum inhibitory concentration (MIC) and the drug prescriptions are made on the basis of MIC data to ensure successful treatment outcomes. Therefore, reliable antimicrobial susceptibility data is crucial, and it will help clinicians about which drug to prescribe. Although few prediction studies based on strategies have been conducted, however, no single machine learning (ML) modelling has been carried out to predict MICs in N. gonorrhoeae. In this study, we propose a ML based approach that can predict MICs of a specific antibiotic using unitigs sequences data. We retrieved N. gonorrhoeae genomes from European Nucleotide Archive and NCBI and analysed them combined with their respective MIC data for cefixime, ciprofloxacin, and azithromycin and then we constructed unitigs by using de Brujin graphs. We built and compared 35 different ML regression models to predict MICs. Our results demonstrate that RandomForest and CATBoost models showed best performance in predicting MICs of the three antibiotics. The coefficient of determination, R2, (a statistical measure of how well the regression predictions approximate the real data points) for cefixime, ciprofloxacin, and azithromycin was 0.75787, 0.77241, and 0.79009 respectively using RandomForest. For CATBoost model, the R2 value was 0.74570, 0.77393, and 0.79317 for cefixime, ciprofloxacin, and azithromycin respectively. Lastly, using feature importance, we explore the important genomic regions identified by the models for predicting MICs. The major mutations which are responsible for resistance against these three antibiotics were chosen by ML models as a top feature in case of each antibiotics. CATBoost, DecisionTree, GradientBoosting, and RandomForest regression models chose the same unitigs which are responsible for resistance. This unitigs-based strategy for developing models for MIC prediction, clinical diagnostics, and surveillance can be applicable for other critical bacterial pathogens.
MoreTranslated text
Key words
Machine learning,Antimicrobial resistance,Neisseria gonorrhoeae,Minimum inhibitory concentration
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined