Complex Drought Patterns Robustly Explain Global Yield Loss for Major Crops
Scientific Reports(2022)
Impacts on Agriculture
Abstract
Multi-purpose crops as maize, rice, soybean, and wheat are key in the debate concerning food, land, water and energy security and sustainability. While strong evidence exists on the effects of climate variability on the production of these crops, so far multifaceted attributes of droughts-magnitude, frequency, duration, and timing-have been tackled mainly separately, for a limited part of the cropping season, or over small regions. Here, a more comprehensive assessment is provided on how droughts with their complex patterns-given by their compound attributes-are consistently related to negative impacts on crop yield on a global scale. Magnitude and frequency of both climate and yield variability are jointly analysed from 1981 to 2016 considering multiscale droughts, i.e., dry conditions occurring with different durations and timings along the whole farming season, through two analogous and standardized indicators enabling comparison among crops, countries, and years. Mainly winter wheat and then spring wheat, soybean and the main maize's season reveal high susceptibility of yield under more complex drought patterns than previously assessed. The second maize's season and rice present less marked and more uncertain results, respectively. Overall, southern and eastern Europe, the Americas and sub-Saharan Africa presents multi-crop susceptibility, with eastern Europe, Middle East and Central Asia appearing critical regions for the most vulnerable crop, which is wheat. Finally, yield losses for wheat and soybean clearly worsen when moving from moderate to extreme multiscale droughts.
MoreTranslated text
Key words
Climate sciences,Hydrology,Plant sciences,Science,Humanities and Social Sciences,multidisciplinary
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined