WeChat Mini Program
Old Version Features

腔镜下腋窝淋巴结清扫在乳腺癌前哨淋巴结微转移根治术中的应用效果评估

Clinical Medicine(2021)

Cited 1|Views9
Abstract
目的 探讨腔镜下腋窝淋巴结清扫(ALND)在乳腺癌前哨淋巴结微转移根治术中的应用疗效.方法 选取2017年3月至2019年12月在河南省人民医院治疗的乳腺癌前哨淋巴结微转移患者64例,采用随机数字表法分为观察组(n=32)和对照组(n=30).其中观察组患者在乳腺癌前哨淋巴结微转移根治术中行腔镜下ALND,对照组患者乳腺癌前哨淋巴结微转移根治术中行传统开放式ALND.观察两组的手术相关参数(手术时间、手术出血量、手术引流量)、并发症发生情况(上肢水肿、上肢疼痛、皮肤感觉障碍、肩关节活动障碍)、复发转移情况、不良预后发生情况(创口感染、创口水肿、乳房创口愈合不良)以及患者满意度.结果 观察组的手术时间长于对照组(P<0.05);观察组的术中出血量、术中引流量少于对照组(P<0.05).观察组患者的并发症发生率(6.25%,2/32)小于对照组(26.67%,8/30),差异有统计学意义(P<0.05).观察组患者不良预后的发生率为15.63%,小于对照组(33.33%,P<0.05);观察组患者癌细胞转移复发与对照组比较差异未见统计学意义(P>0.05).观察组患者对其乳房外观、术后疼痛、预后恢复情况的满意评分均高于对照组(P<0.05).结论 对于乳腺癌前哨淋巴结微转移根治术患者而言,腔镜下ALND较传统开放式ALND的应用效果更佳,虽前者手术的时间更长,但术中出血量、引流量更少,且术后并发症、不良预后发生率显著降低,患者的满意度更高.
More
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined