PAPSS1的表达与脑胶质瘤临床指标和预后的相关性及对细胞增殖和凋亡的影响
Chinese Medicinal Biotechnology(2021)
Abstract
目的 研究PAPSS1表达与脑胶质瘤临床指标和预后的相关性,及其对细胞增殖和凋亡的影响.方法 采用免疫组化方法检测PAPSS1、PDL1蛋白在脑胶质瘤样本的表达,并纳入SPSS统计学分析.其中,PAPSS1和PDL1之间及其与临床指标的相关性分析采用Spearman法;生存期单因素分析采用Kaplan-Meier法和log-rank检验,将单因素分析中具有统计学意义的变量纳入COX多元回归生存分析.使用siRNA技术降低PAPSS1在脑胶质瘤细胞的表达.转染48 h后,利用MTT法检测细胞增殖比率,利用Hochest/PI法检测细胞凋亡率;PAPSS1、PDL1、ki67和Bcl2等基因的表达变化使用qPCR检测.上述实验数据采用GraphPad软件分析.P<0.05为有统计学意义.结果 IHC数据分析显示,癌组织PAPSS1浆表达和患者年龄、病理分级、复发等显著正相关,而PAPSS1核表达和各临床指标均无关,PDL1表达仅和年龄有关;PAPSS1浆表达和PDL1表达之间也显著正相关.生存分析显示,PAPSS1浆高表达的脑胶质瘤患者拥有更差的总生存期和无病生存期;PAPSS1核表达和PDL1表达都与预后无关.当使用siRNA技术降低了PAPSS1在癌细胞的表达时,细胞增殖比率出现下降而凋亡率上升,PDL1、ki67和Bcl2等基因的mRNA表达水平出现显著下调.结论 本研究发现PAPSS1浆表达与脑胶质瘤患者的年龄、病理分级、复发及更短的预后显著相关;降低PAPSS1表达能抑制细胞增殖并促进凋亡,同时也下调了PDL1、ki67、Bcl2等基因的表达水平,提示PAPSS1与脑胶质瘤的个性化治疗相关,值得进一步研究和探讨.
More求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined