基于增强CT影像组学特征预测难治性恶性黑色素瘤肺转移患者的免疫治疗疗效
Chinese Journal of Medical Imaging Technology(2021)
Abstract
目的 探讨基于胸部增强CT影像组学特征预测免疫治疗用于难治性恶性黑色素瘤肺转移疗效的价值.方法 回顾性分析49例难治性恶性黑色素瘤肺内转移患者,均接受程序性死亡受体(PD-1)单抗免疫治疗,采用实体瘤疗效评价标准(RECIST)1.1评价疗效,并将患者分为进展组(n=17)和未进展组[n= 32,包括稳定组(n=16)及部分缓解组(n=16)].提取免疫治疗前增强CT图像中肺转移病灶信息,以3D-Slicer软件手动逐层勾画整个病灶并进行分割;采用Pyradiomics程序提取病灶形状特征、灰度一阶特征、纹理特征和小波特征,以Pearson相关性分析和递归式特征消除策略进行降维.以支持向量机(SVM)方法建立分类模型,预测病变进展的可能性.绘制受试者工作特征(ROC)曲线,评价模型预测进展组、非进展组的效能.结果 对每个靶病灶提取841个增强CT影像组学特征,最终筛选出3个影像组学纹理特征,分别为wavelet-HHH_glszm_Low Gray Level Zone Emphasis、wavelet-HHL_first order Skewness 和 wavelet-LLL_gldm_Small Dependence High Gray Level Emphasis,用于构建影像组学模型.模型预测训练组病变进展的曲线下面积(AUC)为0.913[(95%CI(0.777,1.000)],测试组为0.860[95%CI(0.643,1.000)];预测训练组病变进展的敏感度、特异度、准确率、阳性预测值和阴性预测值分别为83.3%、95.5%、91.2%、90.9%和91.3%,测试组分别为80.0%、80.0%、80.0%、66.7%和88.9%.结论 基于治疗前胸部增强CT影像组学特征建立的模型对恶性黑色素瘤肺转移免疫治疗疗效具有较好预测价值.
More求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined