不同宽度管状胃对食管癌切除术后患者生活质量的影响:一项倾向配比研究
Chinese Journal of Clinical Medicine(2021)
Abstract
目的:探讨细管状胃与宽管状胃对食管癌患者术后生活质量的差异.方法:回顾性分析2018年1月至2019年12月复旦大学附属中山医院胸外科收治的行微创食管癌切除术的520例临床早期食管癌患者的病例资料,分为宽(5 cm宽度)管状胃组(n=260)和细(3 cm宽度)管状胃组(n=260),分析其围手术期外科效果指标.采用欧洲癌症治疗研究组织(EO R T C)生活质量评分量表(Q L Q C-30和O ES-18量表)对2组患者的术前和术后3、6、9、12个月的生活质量进行评价,并采用重复测量方差分析进行比较.结果:2组患者在年龄、性别、体质量指数、合并疾病指数、麻醉风险分级、肿瘤部位和术后病理分期等临床特征方面的差异均无统计学意义,在出血量、术后住院天数、总体并发症发生率方面的差异均无统计学意义.细管状胃组的相关手术耗材费用较高[(0.79±0.04)万元v s(0.58±0.05)万元,P=0.000].2组患者的生活质量各项指标在术前基线水平的差异均无统计学意义,而在术后有不同程度的恶化,但均随时间延长而逐渐改善.重复测量方差分析结果显示,除时间效应外,细管状胃组术后在整体状况评分、呼吸不适、反流症状、咳嗽等4项指标方面明显优于宽管状胃组,差异有统计学意义(P<0.05).结论:采用细管状胃的食管癌患者术后生活质量更好.
More求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined