贵州省不同地貌类型土壤湿度变化及其对气候变化的响应
Research of Soil and Water Conservation(2021)
Abstract
为探究贵州省不同地貌类型土壤湿度时空变化及其对气候变化的响应,基于欧洲中期天气预报中心第五代再分析资料数据集(ERA5),通过一元线性回归、滑动平均、Mann-Kendall突变检验、滑动T检验及相关性分析法,分析了贵州省土壤湿度时空变化特征,揭示了温度和降水的变化对土壤湿度的影响.结果表明:(1)31年来,贵州省表层(0—7 cm)、中层(7—28 cm)及深层(28—100 cm)土壤湿度均呈显著降低趋势,并随着土层深度的增加而加快;(2)贵州省不同深度土壤湿度的下降速率均表现为西快东慢的空间分布特征,其中峰丛洼地地区下降最为明显;(3)1979—2009年,研究区各层土壤湿度与降水间的相关性更强,相关性呈东高西低的空间分布特征,但在喀斯特盆地和喀斯特峡谷地区,土壤湿度与温度间的相关关系更为密切;(4)2001年后,各层土壤湿度与降水的相关系数平均减小了10.29%,而与温度的相关系数却增加了137.59%,该现象在喀斯特高原以及峰丛洼地最为明显,表明温度可能是造成土壤湿度2001年突变的主导因素.
More求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined