Deep Learning Computer-aided Polyp Detection Reduces Adenoma Miss Rate: A United States Multi-center Randomized Tandem Colonoscopy Study (Cadet-Cs Trial)
CLINICAL GASTROENTEROLOGY AND HEPATOLOGY(2022)
Harvard Med Sch
Abstract
BACKGROUND & AIMS: Artificial intelligence-based computer-aided polyp detection (CADe) systems are intended to address the issue of missed polyps during colonoscopy. The effect of CADe during screening and surveillance colonoscopy has not previously been studied in a United States (U.S.) population. METHODS: We conducted a prospective, multi-center, single-blind randomized tandem colonoscopy study to evaluate a deep-learning based CADe system (EndoScreener, Shanghai Wision AI, China). Patients were enrolled across 4 U.S. academic medical centers from 2019 through 2020. Patients presenting for colorectal cancer screening or surveillance were randomized to CADe colonoscopy first or high-definition white light (HDWL) colonoscopy first, followed immediately by the other procedure in tandem fashion by the same endoscopist. The primary outcome was adenoma miss rate (AMR), and secondary outcomes included sessile serrated lesion (SSL) miss rate and adenomas per colonoscopy (APC). RESULTS: A total of 232 patients entered the study, with 116 patients randomized to undergo CADe colonoscopy first and 116 patients randomized to undergo HDWL colonoscopy first. After the exclusion of 9 patients, the study cohort included 223 patients. AMR was lower in the CADe-first group compared with the HDWL-first group (20.12% [34/169] vs 31.25% [45/144]; odds ratio [OR], 1.8048; 95% confidence interval [CI], 1.0780-3.0217; P=.0247). SSL miss rate was lower in the CADe-first group (7.14% [1/14]) vs the HDWL-first group (42.11% [8/19]; P=.0482). First-pass APC was higher in the CADe-first group (1.19 [standard deviation (SD), 2.03] vs 0.90 [SD, 1.55]; P=.0323). First-pass ADR was 50.44% in the CADe-first group and 43.64 % in the HDWL-first group (P=.3091). CONCLUSION: In this U.S. multicenter tandem colonoscopy randomized controlled trial, we demonstrate a decrease in AMR and SSL miss rate and an increase in first-pass APC with the use of a CADe-system when compared with HDWL colonoscopy alone.
MoreTranslated text
Key words
Adenoma Detection Rate,Adenoma Miss Rate,Computer-aided Detection,Deep Learning,Randomized Tandem Colonoscopy Study
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined