WeChat Mini Program
Old Version Features

BloodPAC Data Commons for Liquid Biopsy Data.

JCO Clinical Cancer Informatics(2021)

Univ Chicago

Cited 16|Views27
Abstract
PURPOSE:The Blood Profiling Atlas in Cancer (BloodPAC) Data Commons (BPDC) is being developed and is operated by the public-private BloodPAC Consortium to support the liquid biopsy community. It is an interoperable data commons with the ultimate aim of serving as a recognized source of valid scientific evidence for liquid biopsy assays for industry, academia, and standards and regulatory stakeholders.METHODS:The BPDC is implemented using the open source Gen3 data commons platform (https://gen3.org). In particular, the BPDC Data Exploration Portal, BPDC Data Submission Portal, the BPDC Workspace Hub, and the BloodPAC application programming interface (API) were all automatically generated from the BloodPAC Data Model using the Gen3 data commons platform. BPDC uses Gen3's implementation of the data commons framework services so that it can interoperate through secure, compliant APIs with other data commons using data commons framework service, such as National Cancer Institute's Cancer Research Data Commons.RESULTS:The BPDC contains 57 studies and projects spanning more than 4,100 cases. This amounts to 5,700 aliquots (blood plasma, serum, or a contrived sample) that have been subjected to a liquid biopsy assay, quantified, and then contributed by members of the BloodPAC Consortium. In all, there are more than 31,000 files in the commons as of December 2020. We describe the BPDC, the data it manages, the process that the BloodPAC Consortium used to develop it, and some of the applications that have been developed using its API.CONCLUSION:The BPDC has been the data platform used by BloodPAC during the past 4 years to manage the data for the consortium and to provide workspaces for its working groups.
More
Translated text
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined