WeChat Mini Program
Old Version Features

Efficient and Privacy Preserving Approximation of Distributed Statistical Queries

IEEE TRANSACTIONS ON BIG DATA(2022)

Ben Gurion Univ Negev | Stanford Univ

Cited 3|Views64
Abstract
In recent years, an increasing amount of data is collected in different and often, not cooperative, databases. The problem of privacy-preserving, distributed calculations over separate databases and, a relative to it, the issue of private data release was intensively investigated. However, despite a considerable progress, computational complexity and consequently, the performance of the computations, due to an increasing size of data, remains a limiting factor in real-world deployments. Especially in the case of privacy-preserving computations. In this paper, we suggest sampling as a method of improving computational performance. Sampling was a topic of extensive research in the past that recently received a boost of interest. We provide a sampling method targeted at separate, non-collaborating, vertically partitioned datasets. The method is exemplified and tested on an approximation of intersection set both with and without a privacy-preserving mechanism. An analysis of the bound on the error as a function of the sample size is discussed and a heuristic algorithm is suggested to further improve the performance. The algorithms were implemented and experimental results confirm the validity of the approach.
More
Translated text
Key words
Distributed databases,Protocols,Differential privacy,Estimation,Approximation algorithms,Heuristic algorithms,Law enforcement,Differential privacy,distributed computations,approximate computations
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined