13种园林树种叶片解剖结构与其二氧化硫吸收能力的关系
Xibei zhiwu xuebao(2015)
Abstract
在陕西延安设置空气污染程度不同(重度、轻度污染和对照)的样区,采集常见的13种园林树种叶片,测定其含硫量,并运用单因素方差分析和平均污染指数法评价它们的吸硫能力;同时,利用石蜡切片法和指甲油印法观察3个采样区各树种样叶12项叶片解剖结构指标,通过主成分分析和通径分析研究树种叶片解剖结构对其吸收积累二氧化硫能力的影响.结果表明:(1)不同树种在不同污染区对二氧化硫的吸收降解能力存在显著差异,相同污染情况下不同树种之间的含硫量和相对吸硫量也存在显著差异,13种园林树种的平均吸硫能力大小依次为:旱柳、垂柳、碧桃、桃树较强(2.64~2.15 mg/g),其次为紫叶李、国槐、龙爪槐、小叶黄杨(1.95~1.57 mg/g),紫丁香居中、红叶小檗、臭椿、白蜡、金叶女贞较弱(1.41~1.27 mg/g).(2)12项叶片解剖结构指标(叶厚、上表皮厚度、下表皮厚度、上表皮角质层厚度、下表皮角质层厚度、栅栏组织厚度、海绵组织厚度、栅栏组织海绵组织厚度比、叶片结构紧实度、下表皮气孔密度、下表皮气孔长度、下表皮气孔宽度)在13种园林树种间差异显著,变化范围极大,具有较高灵敏度.(3)主成分分析表明,前4项主成分累计信息量已达87.875%,并从中选出叶片紧实度、上表皮角质层厚度、气孔宽度、下表皮角质层厚度、气孔密度和气孔长度6项贡献率较大的指标;通径分析显示,叶片的上表皮角质层厚度、叶片紧实度和气孔宽度对树种的吸收积累二氧化硫能力直接影响较大(直接通径系数分别为0.92、1.49和0.65),但对叶片吸硫能力的间接作用均不强,而下表皮角质层厚度及气孔的密度和长度对叶片吸收积累二氧化硫有较大的间接影响,且间接作用远高于直接作用.因此,上述6项叶片解剖指标可以作为选择园林树种吸收降解二氧化硫能力的综合评价指标.
MoreKey words
ornamental trees,foliage,sulfur content,leaf structures,absorption capacity of SO2
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined