崇明东滩冬季不同管理模式下水稻田水鸟群落特征及其生境分析
Chinese Journal of Zoology(2017)
Abstract
崇明东滩是亚太地区候鸟迁徙路线的重要中转站,也是上海地区促淤圈围的重点区域.水稻(Oryza sativa)田作为当地分布广泛且重点改造的人工湿地,研究其是否具有水鸟招引效果具有重要意义.本研究于2013和2014年冬季采用样方法对崇明东滩两种不同管理模式的水稻田,即2013年开始改造的传统模式水稻田和改造多年的机械化模式水稻田,进行了水鸟群落及生境因子调查,以探究不同管理模式下水稻田内生境差异,水鸟对不同生境的利用程度及其不同生境中的关键因子对水鸟分布的影响.调查期间共记录到水鸟5目7科18种1 795只次,其中传统模式水稻田记录到水鸟5目6科17种1 756只次,优势种为绿翅鸭(Anas crecca)、斑嘴鸭(A.poecilorhyncha)、鹤鹬(Tringa erythropus);机械化模式水稻田录到水鸟4目5科6种39只次,优势种为小鹧鹧(Tachybaptus ruficollis)和凤头麦鸡(Vanellus vanellus).T检验结果显示,传统模式水稻田对水鸟的招引效果(即多度和物种丰富度)显著优于机械化模式水稻田,2014年改造后传统模式水稻田的水鸟招引效果显著优于2013改造初期.多元回归分析显示,明水面面积比例是影响水稻田水鸟种类、数量分布的最重要因子.结果表明,明水面面积和适合的水位高度是影响冬季水稻田水鸟招引效果的主要因素,为提高冬季水稻田水鸟保育效果,应注重营造、维护冬季水稻田中水文条件.
MoreTranslated text
Key words
Chongming Dongtan,Rice paddy,Waterfowl,Habitat analysis
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined