WeChat Mini Program
Old Version Features

脑卒中不同阶段分级康复模式对患者神经功能与生活能力的影响

Modern Journal of Integrated Traditional Chinese and Western Medicine(2020)

Cited 7|Views2
Abstract
目的 探讨在脑卒中急性期、稳定期以及维持期三个不同阶段,对患者实施分级康复模式的价值,并总结对患者神经功能与生活能力的影响.方法 选取2016年7月—2018年12月十堰市人民医院收治的符合入选标准的124例脑卒中患者为研究对象,依据随机数字表法将124例患者分为研究组与对照组,每组62例.对照组仅给予患者实施常规护理干预,研究组则对患者实施分级康复模式干预,评估2组患者康复前、康复后6个月神经功能缺损情况、运动功能以及生活能力,同时比较2组患者的并发症发生率,其中采用神经功能缺损程度量表(CSS)评价患者的神经功能,采用简化版Fugl-Meyer运动功能量表评估患者运动功能,采用Barthel指数评定患者的生活能力.结果 康复后6个月,2组患者的CSS评分均下降且研究组降低更为明显,差异有统计学意义(P均<0.05);2组患者的Fugl-Meyer评分与Barthel指数评分均升高且研究组显著高于对照组(P均<0.05);研究组患者的泌尿系感染、肺部感染以及肩手综合征发生率均低于对照组(P均<0.05);2组患者的压疮与下肢深静脉血栓发生率比较差异无统计学意义(P均>0.05).结论 分级康复模式能够促进患者运动功能、神经功能的恢复,提高患者生活能力,降低泌尿系与肺部感染及肩手综合征的发生率.
More
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined