WeChat Mini Program
Old Version Features

乳腺癌患者化疗期间症状群特征及预测指标的研究

Chinese Journal of Nursing(2020)

Cited 15|Views15
Abstract
目的 探讨乳腺癌患者化疗期间症状群内部特征,并分析高症状特征患者的风险指标.方法 采用横断面研究,于2016年1月-2017年1月选取上海市某三级甲等医院228例乳腺癌患者作为研究对象,收集乳腺癌患者化疗期间疲乏、焦虑、抑郁、睡眠障碍相关自我报告症状,基于潜类别模型探讨该症状群的潜在类别,并探索不同类别间的区分指标.结果 乳腺癌患者化疗期疲乏-焦虑-抑郁-睡眠障碍症状群表现为3种不同的类别,分别命名为“高症状组”“高心理症状组”和“低症状组”,占比依次为25.0%、19.7%、55.3%.相比于“低症状组”,前两组生活质量得分较低,差异有统计学意义(F=55.499,P<0.001).锻炼自我效能是区分和预测“高症状组”的独立指标(OR=0.949,P=0.019);“高心理症状组”预测指标分别是中间型性格特点(OR=6.189,P=0.007)、未接受过乳腺癌切除术(OR =4.718,P=0.020)及较低的锻炼自我效能(OR=0.926,P=-0.002).结论 乳腺癌患者化疗期间症状群存在明显不同的分类特征,“高症状组”的生活质量较低,锻炼自我效能是其重要预测因子.后续对于乳腺癌患者的症状管理应根据不同患者的症状特征,给予针对性的干预.
More
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined