染色体重塑分子SNF5血清差异性表达用于早期诊断乳腺癌的初步研究
Chinese Journal of General Practice(2017)
Abstract
目的 探究染色体重塑分子SNF5血清差异性表达用于早期诊断乳腺癌的可行性.方法 选择2010年8月-2015年8月间于宁波大学医学院附属鄞州人民医院病理检查证实的196例乳腺癌患者(0期23例、Ⅰ期46例、Ⅱ期29例、Ⅲ期67例、Ⅳ期31例,平均年龄36.3岁)为研究对象,并选择同期在该院健康体检的64名志愿者(平均年龄37.9岁)为对照组.采用实时定量PCR检测2组外周血血清中SNF5的表达水平.采用统计学软件对2组SNF5水平进行统计学分析,并采用ROC曲线分析SNF5诊断乳腺癌的价值,进而探究染色体重塑分子SNF5血清差异性表达用于早期诊断乳腺癌的可行性.结果 乳腺癌患者外周血血清中SNF5水平显著性高于对照组(P<0.05),0、Ⅰ、Ⅱ、Ⅲ、Ⅳ期乳腺癌患者SNF5水平分别是对照组的13、15、15、16、23倍(均P<0.05).ROC曲线结果显示,SNF5诊断乳腺癌的敏感度与特异度分别为82%和93%,曲线下面积为0.8734(95% CI:0.923~ 0.944).结论 染色体重塑分子SNF5在乳腺癌患者中的表达明显升高,其可作为早期诊断乳腺癌肿瘤的生物标志物,具有敏感度、特异度高的优点.
MoreTranslated text
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined