硅酸盐浸渍改性对杉木视觉物理量的影响
Journal of Beijing Forestry University(2020)
Abstract
[目的]对杉木素材与硅酸盐改性材的弦切板与径切板材色、光泽度、纹理进行测量与对比,分析硅酸盐改性处理对杉木视觉特性的影响规律.旨在为硅酸盐改性材的大规模应用提供理论依据,指导杉木改性材相关产品的研发.[方法]在改性前后,对100 mm×100 mm×20 mm的杉木径切板和杉木弦切板的材色、光泽度、纹理进行测量,分析改性处理前后杉木视觉物理量的变化规律.[结果]改性后,弦切板与径切板的红绿色度值分布区间分别为2.0~6.0和2.5~5.5,黄蓝色度值分布区间分别为17.5~24.0和18.0~24.0,两组数据均较素材小.明度值分布区间也有所下降,为61.0~71.0,表明改性处理对杉木的色彩倾向有所均衡,在明暗程度上也有一定影响.杉木素材的平行纹理光泽度(GZL)、垂直纹理光泽度(GZT)、光泽度比(GZB)分别为5.54%、4.32%、1.28,杉木改性材的GZL、GZT、GZB分别为3.32%、2.86%、1.16.两种杉木的GZL均略大于GZT,呈现一定的线性关系.改性后,光泽度线性趋势更加明显,而且数据也更为集中.杉木改性材的纹理粗细、纹理间距、纹理疏密度分别为0.55 mm、9.51 mm、0.06,与素材差别微弱,表明改性处理并没有对纹理的疏密程度产生影响.改性材弦切板与径切板的纹理灰度与背景 灰度分布区间都较素材有所降低,说明改性处理使得杉木的纹理与背景 的灰度等级变得更高.杉木改性材的纹理灰度与背景 灰度分布较素材松散,两者呈一定的线性关系但不紧凑.[结论]硅酸盐改性处理对木材颜色影响较小,杉木基本上维持了原有的颜色特征.杉木改性材光泽度略小于素材,基本分布规律相同.改性处理对纹理间距与纹理粗细的影响微弱,改性材仍保持同素材一样的纹理疏密程度,改性后的杉木纹理灰度值与背景 灰度值差别变大,对比度稍高,使得改性杉木的纹理较素材更明显.
MoreTranslated text
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined