WeChat Mini Program
Old Version Features

基于塑性应变梯度理论的材料失稳型冲击地压触发判据

Journal of China Coal Society(2018)

Cited 3|Views11
Abstract
为研究材料失稳型冲击地压失稳的发生判据,开展了摄像实时观测情况下,煤体受端部位移约束的冲击倾向性煤体压缩破坏实验.首先,探索了实验室尺度下冲击煤体的破裂特征,然后采用有限元数值分析的方法对比分析了工程尺度下煤体发生冲击地压前的破裂趋势.最终基于实验和数值分析结果,建立了塑性应变梯度理论下的材料失稳型冲击地压的触发判据.冲击煤体压缩破坏实验结果表明:端部约束煤体发生破坏时,煤体呈现冲击破坏的特点,并分阶段发展,每个阶段都伴随着不同程度的声音信号与相关的特征信息.当应力达到强度的60%时,有少量煤体喷射;达到78%以上时,较多的煤体发生冲击,具有明显的喷射特点;接近峰值强度时,有大量煤体臌出,但无喷射特点.煤体破裂形式整体上表现为拉剪混合破裂,形成的破裂面呈内凹三角形状,与冲击地压现场煤体破裂面类似,表明实验结果具有一定的参考意义.不同高径比的煤体破坏的峰值强度略有不同,小高径比煤样的抗压强度稍大、破裂面内凹深度减小.采用有限元数值分析方法显示,巷道侧壁围岩容易在巷道变形过程中形成内凹三角形状的塑性变形集中带,从而在冲击地压发生中形成三角状的破裂面.基于内凹破裂面形态和塑性应变梯度理论,采用应变软化本构,从静力平衡和能量平衡角度,建立了煤体发生破坏前材料冲击失稳的判定准则.
More
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined