A Robust Adaptive Estimation Algorithm for Hamiltonian Multi-Agent Networks.
IEEE Control Systems Letters(2020)
Malayer Univ | Nottingham Trent Univ
Abstract
In this letter a robust incremental adaptation algorithm is presented to solve distributed estimation for a Hamiltonian network, where the measurements at each node may be corrupted by heavy-tailed impulsive noise. In the proposed algorithm, each node employs an error-nonlinearity into the update equation to mitigate the detrimental effects of impulsive noise. Moreover, the algorithm estimates both the optimal error non-linearity and the unknown parameter together, which in turn, obviates the requirement of prior knowledge about the statistical characteristics of measurement noise. In addition to algorithm development, its steady-state performance as well as convergence analysis have been provided. Simulation results validate the correctness of the analysis and reveal the superiority of the proposed algorithm over some existing algorithms.
MoreTranslated text
Key words
Robustness,Adaptive systems,Noise measurement,Mathematical model,Estimation,Steady-state,Acoustic measurements,Adaptive network,Hamilton,incremental,robust estimation
PDF
View via Publisher
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined