WeChat Mini Program
Old Version Features

DESIGN OF A CODE-AGNOSTIC DRIVER APPLICATION FOR HIGH-FIDELITY COUPLED NEUTRONICS AND THERMAL-HYDRAULIC SIMULATIONS

NUCLEAR SCIENCE AND ENGINEERING(2021)

Argonne Natl Lab

Cited 8|Views14
Abstract
While the literature has numerous examples of Monte Carlo and computational fluid dynamics (CFD) coupling, most are hard-wired codes intended primarily for research rather than as standalone, general-purpose codes. In this work, we describe an open source application, ENRICO, that allows coupled neutronic and thermal-hydraulic simulations between multiple codes that can be chosen at runtime (as opposed to a coupling between two specific codes). In particular, we outline the class hierarchy in ENRICO and show how it enables a clean separation between the logic and data required for a coupled simulation (which is agnostic to the individual solvers used) from the logic/data required for individual physics solvers. ENRICO also allows coupling between high-order (and generally computationally expensive) solvers to low-order “surrogate” solvers; for example, Nek5000 can be swapped out with a subchannel solver. ENRICO has been designed for use on distributed-memory computing environments. The transfer of solution fields between solvers is performed in memory rather than through file I/O.We describe the process topology among the different solvers and how it is leveraged to carry out solution transfers. We present results for a coupled simulation of a single light-water reactor fuel assembly using Monte Carlo neutron transport and CFD.
More
Translated text
Key words
Monte Carlo,CFD,multiphysics,nuclear reactor,open source
PDF
Bibtex
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined