WeChat Mini Program
Old Version Features

An Automated Knowledge-Based Planning Routine for Stereotactic Body Radiotherapy of Peripheral Lung Tumors Via DCA-based Volumetric Modulated Arc Therapy

Journal of Applied Clinical Medical Physics(2020)

Univ Kentucky

Cited 9|Views34
Abstract
Purpose To develop a knowledge-based planning (KBP) routine for stereotactic body radiotherapy (SBRT) of peripherally located early-stage non-small-cell lung cancer (NSCLC) tumors via dynamic conformal arc (DCA)-based volumetric modulated arc therapy (VMAT) using the commercially available RapidPlan(TM) software. This proposed technique potentially improves plan quality, reduces complexity, and minimizes interplay effect and small-field dosimetry errors associated with treatment delivery. Methods KBP model was developed and validated using 70 clinically treated high quality non-coplanar VMAT lung SBRT plans for training and 20 independent plans for validation. All patients were treated with 54 Gy in three treatments. Additionally, a novel k-DCA planning routine was deployed to create plans incorporating historical three-dimensional-conformal SBRT planning practices via DCA-based approach prior to VMAT optimization in an automated planning engine. Conventional KBPs and k-DCA plans were compared with clinically treated plans per RTOG-0618 requirements for target conformity, tumor dose heterogeneity, intermediate dose fall-off and organs-at-risk (OAR) sparing. Treatment planning time, treatment delivery efficiency, and accuracy were recorded. Results KBPs and k-DCA plans were similar or better than clinical plans. Average planning target volume for validation was 22.4 +/- 14.1 cc (7.1-62.3 cc). KBPs and k-DCA plans provided similar conformity to clinical plans with average absolute differences of 0.01 and 0.01, respectively. Maximal doses to OAR were lowered in both KBPs and k-DCA plans. KBPs increased monitor units (MU) on average 1316 (P 0.001) while k-DCA reduced total MU on average by 1114 (P 0.001). This routine can create k-DCA plan in less than 30 min. Independent Monte Carlo calculation demonstrated that k-DCA plans showed better agreement with planned dose distribution. Conclusion A k-DCA planning routine was developed in concurrence with a knowledge-based approach for the treatment of peripherally located lung tumors. This method minimizes plan complexity associated with model-based KBP techniques and improve plan quality and treatment planning efficiency.
More
Translated text
Key words
adaptive re&#8208,planning,FFF&#8208,beam,knowledge&#8208,based planning,lung SBRT
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined